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Abstract

At low frequencies (below 10Hz), performance of a conventional shaker is limited by small acceleration
amplitudes and a high level of total harmonic distortion. The present article describes a low-frequency
vibration generator that overcomes these limitations. The vibration generator consists of a cantilever beam
excited by a conventional shaker. The cantilever beam is tuned to resonate at the desired excitation
frequency, which leads to a relatively large vibratory motion at the beam tip with very small harmonic
distortion. Analysis of the system is performed by means of model equations describing both the flexural
and longitudinal components of vibration. A comprehensive measurement of the generator’s performance
confirms that it can serve as an economically attractive alternative to existing low-frequency vibration
generators used in vibration measurement and calibration.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Growing demands for low-frequency (below 10Hz) vibration measurement have created a need
for an accurate, robust, and economical means to calibrate vibration transducers at low
frequencies [1]. The challenge of low-frequency vibration calibration oftentimes lies in generating
low-frequency sinusoidal motion with good waveform purity. Typically, the requirements for a
see front matter r 2005 Elsevier Ltd. All rights reserved.

jsv.2005.02.002

ding author. Tel.: +1 613 993 1003; fax: +1 613 952 1394.

ress: wonsuk.ohm@nrc-cnrc.gc.ca (W.-S. Ohm).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

Nomenclature

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA;

p
parameter in flexural wave

equation, m2 s�1

āv relative amplitude of transverse/rocking
acceleration, in fraction

A beam cross-sectional area, m2

c1 damping coefficient at first resonance
frequency, Pa s

cl

ffiffiffiffiffiffiffiffiffi
E=r

p
; longitudinal wave speed, m s�1

cðoÞ frequency-dependent damping coeffi-
cient, Pa s

E Young’s modulus of beam material, Pa
f excitation frequency, Hz
f1 first resonance frequency, Hz
Fd,s amplitudes of dynamic and static parts

of driving force, N
Fu,y external forces in longitudinal and

flexural directions, N
HðxÞ Heaviside unit step function
i

ffiffiffiffiffiffiffi
�1

p
; imaginary unit

I moment of inertia of beam cross-
section, m4

J integral of Lagrangian density
l beam length, m
L Lagrangian density, N
m end mass, kg
m̄ mb=rA; dimensionless end mass
r

ffiffiffiffiffiffiffiffiffi
I=A

p
; radius of gyration, m

s coordinate along centroidal plane, m
S̄v;r transverse sensitivity of reference trans-

ducer, %

S̄v;t transverse sensitivity of test transducer,
%

t time, s
THD total harmonic distortion, in fraction
u longitudinal displacement, m
uTHD uncertainty due to total harmonic dis-

tortion, %
uv uncertainty due to transverse/rocking

vibration, %
x material coordinate, m
x0 position of driving force, m
y flexural displacement, m
yd,s dynamic and static parts of flexural

displacement, m
b

ffiffiffiffiffiffiffiffiffi
o=a

p
; flexural wave number for loss-

less beam, m�1

bn b½1 þ ia2 ~cðoÞ=o�1=4; complex flexural
wave number for lossy beam, m�1

g damping exponent
d deviation of frequency response of test

unit from that of reference transducer,
%

dW B virtual work performed at boundaries
dðxÞ Dirac delta function
� small ordering parameter
�xx Green strain
y tangential angle, rad
k curvature, m�1

l flexural wavelength, m
P ðbrÞ2; dimensionless beam thickness
r density of beam material, kgm�3

o angular excitation frequency, rad s�1
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vibration generator are specified in terms of (1) total harmonic distortion (THD) in acceleration,
(2) transverse and rocking acceleration, (3) frequency and acceleration amplitude stability, and (4)
hum and noise [2,3]. An electrodynamic shaker, when operated within its intended frequency
range, can produce accurate vibratory motion meeting the above requirements. However, when
calibrations are to be performed at low frequencies, the acceleration generated by a conventional
shaker is relatively low in amplitude due to the limited maximum displacement, and is often
subject to a high level of harmonic distortion. Under these circumstances, a vibration generator
specifically tailored to produce low-frequency motion, such as a long-stroke shaker [1] or a dual
centrifuge [4], may be required. Because of the specific mechanisms used to provide the required
performance at low frequencies, such special-purpose vibration generators can be costly.
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Fig. 1. Plan-view of the low-frequency vibration generation/calibration system.
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This article presents a simple method for extending the effective low-frequency range of a
conventional shaker. A cantilever beam, whose length is adjusted to yield the first resonance at the
desired test frequency, is driven by a shaker, and provides selective excitation of the frequency
component of interest (Fig. 1). The resulting flexural motion at the free end of the beam exhibits
only small harmonic distortion despite the presence of harmonic components in the shaker’s
output. Although the technique has been used extensively in vibration and acoustics, no detailed
accounts of its suitability for precision applications such as low-frequency vibration calibration
appear to have been reported. The purpose of the article is to fill this void and to provide
theoretical and experimental foundations for the use of the technique by laboratories that perform
low-frequency accelerometer calibration.

The initial part of the article is devoted to an analysis of the forced vibration of a cantilever
beam. Although there exists a plethora of literature on flexural vibration of an elastic beam,
relatively little attention has been given to the longitudinal component of particle displacement
arising from the flexion of a beam. Coupling between the flexural and longitudinal modes leads to
the generation of a relatively small motion transverse to the main-axis component, whose level is
of prime concern for use of the cantilever beam as a vibration generator in accelerometer
calibration. (For the setup shown in Fig. 1, the flexural component of beam displacement is
considered as the ‘‘main-axis’’ motion, while the longitudinal component that is normal to the
main axis is referred to as the ‘‘transverse’’ motion.) Therefore, a set of model equations
describing both the flexural and the associated longitudinal displacements of an elastic beam are
considered. Beam motion at the free end is illustrated in the form of frequency response,
acceleration-time profile, and particle trajectory.

Various aspects of the performance of the vibration generator, such as total harmonic
distortion and transverse/rocking acceleration, are measured in the frequency range from 2 to
10Hz and in the acceleration range from 1 to 10m s�2. The influence of the vibration generator on
the measurement uncertainty associated with the comparison calibration of accelerometers is also
addressed.
2. Theory

Consider a schematic view of an elastic beam shown in Fig. 2(a). An initially straight, isotropic,
homogeneous beam of a constant rectangular cross-section is assumed. The deflection of the beam



ARTICLE IN PRESS

ms

l

x

y

c=c(ω) 

x0

F=Fs+Fd e-i ω t

(a) (b)

x

s

(u,y)

dx

(x,0)

ds

(x+u,y)

θ

Fig. 2. (a) Schematic model of the low-frequency vibration generator and (b) flexural and longitudinal displacements of

an infinitesimal beam element.
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is represented by that of the centroidal plane (shown in dashed line). The material coordinate x

coincides with the position of the centroidal plane prior to deformation. The flexural and
associated longitudinal displacements of an infinitesimal element are denoted by y and u,
respectively [Fig. 2(b)]. To characterize the relative magnitudes of the flexural and longitudinal
components of motion, a small ordering parameter denoted by � is introduced. Under the current
ordering scheme, the flexural displacement, when normalized by a characteristic flexural
wavelength l; is of Oð�Þ smallness ½y=l�Oð�Þ�: The longitudinal motion due to the flexion of a
beam is deemed to be a second-order effect ½u=l�Oð�2Þ�; which is consistent with experimental
observations. The force exerted by a shaker is represented by F ¼ Fs þ Fde

�iot at x ¼ x0; where o
is the excitation frequency and Fs;d are the amplitudes of the static and dynamic parts of the
shaker force, respectively. (The purpose of the static load Fs is to model the constant shaker force
that is required to maintain a steady contact between the shaker tip and the beam.) The system
damping is modeled by a viscous foundation [5,6] with frequency-dependent damping coefficient
cðoÞ: For derivation of boundary conditions at the free end ðx ¼ lÞ; vibration pickups and
mounting fixtures are assumed to possess negligible rotational inertia and are collectively
represented by the end mass m. The equation of motion and its boundary conditions describing
the flexural motion at Oð�Þ are

q4y

qx4
þ ~cðoÞ

qy

qt
þ

1

a2

q2y

qt2
¼ ~Fsdðx � x0Þ þ ~Fddðx � x0Þe

�iot, (1)

yð0; tÞ ¼
qyð0; tÞ

qx
¼

q2yðl; tÞ

qx2
¼ 0, (2)

m
q2yðl; tÞ

qt2
¼ EI

q3yðl; tÞ

qx3
, (3)
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where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
; E Young’s modulus of the beam material, I the moment of inertia of the cross-

section, r the density, A the cross-sectional area, dðxÞ the Dirac delta function, ~cðoÞ ¼ cðoÞ=EI ; and
~Fs;d ¼ Fs;d=EI : Accordingly, the associated longitudinal motion at Oð�2Þ is described by

q2u

qx2
¼ �

1

2

q
qx

qy

qx

� �2

, (4)

uð0; tÞ ¼ 0, (5)

m
q2uðl; tÞ

qt2
¼ �EA

quðl; tÞ

qx
�

EA

2

qyðl; tÞ

qx

� �2
. (6)

Derivations of the above equations of motion [Eqs. (1) and (4)] are found in Appendix A.
Three notable features are observed regarding the above boundary value problem (1)–(6). First,

coupling between the flexural and longitudinal modes occurs through the terms

�
1

2

q
qx

qy

qx

� �2

and �
EA

2

qyðl; tÞ

qx

� �2
in Eqs. (4) and (6), i.e., the longitudinal motion is excited by the forcing functions that depend
quadratically on the flexural-wave solution. The solution procedure thus requires the flexural-
wave solution be obtained, which is then substituted into Eqs. (4) and (6). Second, the
longitudinal-component equation (4) indicates that the centroidal plane of a beam undergoes
uniform extensional deformation. [See the discussion leading to Eqs. (A.1) and (A.2) in Appendix
A.] Third, the presence of an end mass leads to time-dependent boundary conditions (3) and (6),
for which normal modes do not form an orthogonal set. Because the conventional normal mode
expansion fails to produce solutions for this type of boundary value problem, other means of
analysis [7–9] are in order.

The Laplace transform [9] is used to seek the flexural-wave solution. The static deflection in
response to static load is given by

ysðxÞ ¼
~Fs½

1
2
x0x2 � 1

6
x3 þ 1

6
ðx � x0Þ

3Hðx � x0Þ�, (7)

where HðxÞ is the Heaviside unit step function. The dynamic part of the solution is cast in the
form ydðx; tÞ ¼ Y ðxÞe�iot; where applying the Laplace transform yields

Y ðxÞ ¼
~Fd

ðb
Þ3
N1MðxÞ

D
þ

N2LðxÞ

D
þ Hðx � x0ÞLðx � x0Þ

� �
. (8)

Here,

bn
¼ ½b4

þ io~cðoÞ�1=4 � b 1þ i
a2 ~cðoÞ
4o

� �
(9)

is the wave number for a lossy beam and b ¼
ffiffiffiffiffiffiffiffiffi
o=a

p
the lossless wave number. Functions LðxÞ and

MðxÞ are defined by

LðxÞ ¼
sinhb
x � sinb
x

2
; MðxÞ ¼

coshb
x � cos b
x

2
. (10,11)
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Coefficients N1, N2, and D are given by

N1 ¼ L000ðlÞL00ðl � x0Þ � L00ðlÞL000ðl � x0Þ

þ
mo2

EI

� �
LðlÞL00ðl � x0Þ � L00ðlÞLðl � x0Þ½ �, ð12Þ

N2 ¼ L000ðl � x0ÞM
00ðlÞ � L00ðl � x0ÞM

000ðlÞ

þ
mo2

EI

� �
Lðl � x0ÞM

00ðlÞ � L00ðl � x0ÞMðlÞ½ �, ð13Þ

D ¼ L00ðlÞM 000ðlÞ � L000ðlÞM 00ðlÞ þ
mo2

EI

� �
L00ðlÞMðlÞ � LðlÞM 00ðlÞ½ �. (14)

The complete flexural-wave solution then has the form

yðx; tÞ ¼ ysðxÞ þ Re½Y ðxÞe�iot� ¼ ysðxÞ þ Y RðxÞ cos ot þ Y I ðxÞ sin ot, (15)

where Y RðxÞ and Y I ðxÞ are the real and imaginary parts of Y ðxÞ; respectively. Resonance occurs
when the determinant jDj takes the minimum value (or for a lossless beam, D ¼ 0). Setting D ¼ 0
thus results in the characteristic equation for a lossless cantilever beam, that is,

1 þ coshbl cosbl þ m cosbl sinhbl � sinbl coshbl½ � ¼ 0, (16)

where m ¼ mb=rA is the dimensionless end mass.
Direct integration of Eq. (4), following the substitution of Eq. (15), yields the longitudinal-wave

solution:

uðx; tÞ ¼ �
1

4

Z x

0

½2ðy0sÞ
2
þ ðY 0

RÞ
2
þ ðY 0

I Þ
2
�dx

�

Z x

0

y0sY
0
R dx cos ot �

Z x

0

y0
sY

0
I dx sin ot

�
1

4

Z x

0

½ðY 0
RÞ

2
� ðY 0

I Þ
2
�dx cos 2ot �

1

4

Z x

0

ð2Y 0
RY 0

I Þdx sin 2ot

þ
o2

o2 � ðEA=lmÞ

� � Z l

0

y0sY
0
R dx

x

l

� 	
cos ot

þ
o2

o2 � ðEA=lmÞ

� � Z l

0

y0sY
0
I dx

x

l

� 	
sin ot

þ
1

4

ð2oÞ2

ð2oÞ2 � ðEA=lmÞ

" #Z l

0

½ðY 0
RÞ

2
� ðY 0

I Þ
2
�dx

x

l

� 	
cos 2ot

þ
1

4

ð2oÞ2

ð2oÞ2 � ðEA=lmÞ

" #Z l

0

ð2Y 0
RY 0

I Þdx
x

l

� 	
sin 2ot; ð17Þ

where primes on ysðxÞ and Y R;I ðxÞ denote differentiation with respect to the integration variable x:
Examination of Eq. (17) reveals that, due to the quadratic nature of flexural–longitudinal mode
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coupling, the longitudinal response consists of terms oscillating at both the excitation frequency o
and twice that frequency, 2o: Notice that the terms oscillating at o in Eq. (17) originate from the
static load Fs; if Fs ¼ 0 (and therefore ys ¼ 0), the longitudinal mode responds solely at frequency
2o: The last four terms in Eq. (17) constitute the dynamic response of a spring–mass oscillator,
wherein the beam behaves as a lumped spring element with spring constant EA=l in the
longitudinal direction. Because the frequency range of interest lies well below the resonance
frequency of the oscillator, these four terms are negligible.
3. System implementation

The NRC low-frequency vibration generator consists of an annealed brass beam of dimensions
50.8mm� 3.2mm� 1676.4mm ð200 � 1=800 � 6600Þ; an electrodynamic shaker (model EA1250, MB
Electronics), and a power amplifier (model 2125MB, MB Electronics). The beam is mounted on a
rig equipped with a clamp, which enables the effective beam length l to be adjusted. The beam
length is chosen such that the first resonant mode of vibration occurs at the desired excitation
frequency. Given the beam cross-sectional dimensions (50.8mm� 3.2mm), the material constants
for brass [10] (r ¼ 8500kgm�3 and E ¼ 104GPa), an excitation frequency o; and an end mass m,
the characteristic equation (16) can be solved for the beam length l that gives rise to the first
resonance. In practice, an approximate equation for the beam length is used

l ¼ ð1:8751154� 1:00098m þ 0:748624m2 � 0:44818m3

þ 0:174145m4 � 0:031497m5Þ=b, ð18Þ

whose results deviate from those obtained from Eq. (16) by no more than 6 ppm in the range
0pmp1: (For example, the beam length at 2Hz, assuming an end mass of 45 g, is obtained by
substituting the corresponding parameters b ¼ 1:9721m�1 and m ¼ 0:0642 into Eq. (18); the
result is l ¼ 920mm:) Subsequent fine-adjustment of the beam length may be necessary to achieve
the lowest level of total harmonic distortion.

Some nonlinear effects specific to a cantilever system should be minimized to attain good
waveform purity. To suppress the loss-of-contact nonlinearity [11], it is imperative to pre-load the
beam with the shaker tip and to ensure a steady contact during the motion. The influence of
higher resonant modes on the first mode via nonlinear interaction [12] can be reduced by placing
the shaker tip at the node of a higher vibration mode and therefore preventing it from being
excited. However, this scheme may lead to the loss-of-contact nonlinearity mentioned above due
to the limited excursion of the shaker tip; the first node of the third mode, for example, is almost
half the beam length away from the clamped end, where the vibration amplitude of the first mode
is so large that the shaker tip and the beam are no longer able to maintain a steady contact. A
practical approach is to place the shaker close to the clamped end and to use a moderate
excitation force such that the beam displacement is large enough for the purpose of vibration
calibration, but is not too large to trigger the nonlinear coupling of higher vibration modes. In our
setup, the shaker tip is situated 104mm away from the clamped end.

Two different types of accelerometers are used in conjunction with a conditioning amplifier
(model 2650, Brüel & Kjær) to measure vibration; a general-purpose, uniaxial accelerometer
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(model 4382, Brüel & Kjær) is used for most of the vibration measurements, while a triaxial
accelerometer (model 4321, Brüel & Kjær) is employed for the simultaneous measurement of
main-axis and transverse acceleration. Accelerometers are mounted such that their main
sensitivity axes are aligned in the direction of flexural motion. Output from an accelerometer is
displayed on an oscilloscope (model TDS724D, Tektronix) as a time waveform and on a digital
voltmeter (model 1271, Datron) as rms voltage. For measurements of the shaker force, a force
transducer (model 209B12, PCB Piezotronics) can be inserted at the contact point of the shaker
and the beam. Frequency of the vibration is measured with a frequency counter (model PM6680B,
Fluke).
4. Results

4.1. Beam motion at the free end

To illustrate the beam motion at the free end, a beam that is tuned to have its first resonance at
2Hz (l ¼ 920mm) is considered. Fig. 3(a) shows the computed frequency response in flexural
acceleration (solid line) compared with measurements (circles). For measurement of the frequency
response, sinusoidal force with constant amplitude Fd ¼ 4:6N is applied over the frequency range
of interest and the corresponding flexural acceleration is measured with a uniaxial accelerometer
(model 4382, Brüel & Kjær). A frequency-power law for the system damping,

~cðf Þ ¼ ~c1
f

f 1

� �g

, (19)

is assumed, where the damping coefficient ~c1 at the first resonance frequency f1 and the exponent g
are determined empirically in such a way as to yield the best fit with measurements. (For the beam
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under consideration with f 1 ¼ 2Hz; these values are ~c1 ¼ 8� 10�2 m�4 s and g ¼ 1:) Shown in the
inset of Fig. 3(b) is an expanded view of the frequency response for frequencies up to the second
resonant peak.

Measurements of acceleration profile at 2Hz (solid lines), taken with the aid of a triaxial
accelerometer (model 4321, Brüel & Kjær), are displayed along with computations (dashed lines)
in Figs. 4 and 5. A shaker force with amplitudes Fs ¼ 30N and Fd ¼ 17:7N is applied. As for the
flexural acceleration, Fig. 4 shows good agreement between measured (solid line) and computed
(dashed line) waveforms. However, Fig. 5 shows that the theory (dashed line) overestimates the
longitudinal component of acceleration. The discrepancy can in part be attributed to the rocking
motion of the accelerometer-mounting surface (and subsequent tilting of the accelerometer axes)
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resulting from beam flexion. To account for the effect of rocking motion on acceleration
measurements, vector decomposition of acceleration €r is undertaken in the coordinate system
spanned by the accelerometer axes:

€r ¼
cos y sin y

� sin y cos y

� � €u

€y

 !
¼

€u cos yþ €y sin y

€y cos y� €u sin y

 !
¼

€u þ €yy0 þ Oð�4Þ

€y þ Oð�3Þ

 !
, (20)

where y is the tangential (or tilt) angle of the mounting surface. In the above equation, the terms €y
and €u þ €yy0 represent, respectively, the flexural and longitudinal accelerations that are apparent to
an accelerometer. Eq. (20) indicates that at the leading order [Oð�Þ], rocking of the mounting
surface does not influence the measurement of the main-axis (flexural) acceleration. Instead, the
effect of rocking vibration €yy0 is combined with that of the transverse (longitudinal) vibration €u to
form a much smaller Oð�2Þ effect, represented by the terms €u þ €yy0: It can be seen in Fig. 5 that the
combination €u þ €yy0 (dash-dot line) shows better agreement with the measured acceleration (solid
line) than the longitudinal acceleration €u alone (dashed line). The high-frequency wiggles observed
in the measured waveform are due to the hum and noise whose spectral peaks are at the integer
multiples of 60Hz.

Fig. 6 shows the displacement of the beam tip at 2Hz, calculated from Eqs. (15) and (17). In
Fig. 6(a), the flexural and longitudinal components are plotted on different amplitude scales
because of the order-of-magnitude difference in their nominal amplitudes. The trajectory of the
beam tip is shown in Fig. 6(b). Note that the presence of 2o-terms in the longitudinal
displacement [recall Eq. (17)] manifests itself as the slight curvature of the trajectory; if the
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longitudinal mode responded only at the excitation frequency o; as in the case of the flexural
mode, the trajectory would have been a straight line.

4.2. Generator performance

A comprehensive set of measurements is undertaken regarding the performance of the low-
frequency vibration generator. Note that we present here only the frequency and amplitude
information because phase measurements are seldom performed in vibration calibration unless
the transducers under test are to be used in an array configuration. In Table 1 the results are listed
at three different levels of nominal acceleration for each of five test frequencies. Short-term
frequency stability is obtained by computing the repeatability (defined as the relative standard
deviation of the mean [13]) of readings from the frequency counter over a period of one minute.
Similarly, acceleration amplitude stability is given by the repeatability of rms voltage readings
from the voltmeter. Both frequency and acceleration amplitude stability generally improve with
increasing level of acceleration because of the enhanced signal-to-noise ratio at higher acceleration
levels.

The spectrum analyzer function of the oscilloscope (model TDS724D, Tektronix) is used to
assess the total harmonic distortion in acceleration, where the first ten harmonic components are
included in the calculation. [It is necessary to consider up to the tenth harmonic because it is likely
that the sixth and seventh harmonics, located near the second resonant peak of the frequency
Table 1

Performance of the low-frequency vibration generator

Frequency (Hz)

(Beam length)

Acceleration

(m/s2)

Frequency

stability

(ppm)

Acceleration

amplitude

stability (ppm)

THD (%) Transverse

and rocking

vibration (%)

Level of hum

and noise below

full output (dB)

2 1 431 4271 0.7 5.0

(920mm) 5 88 558 0.7 2.8 51

10 60 1104 1.3 4.1

4 1 361 1155 0.6 2.7

(642mm) 5 13 575 0.5 2.8 52

10 7 273 0.9 3.0

5 1 36 1989 0.7 3.2

(571mm) 5 12 632 0.5 3.2 50

10 12 192 0.8 3.1

8 1 19 1988 3.5 4.0

(446mm) 5 20 897 0.8 3.7 50

10 3 183 0.9 3.7

10 1 64 1765 4.5 4.9

(396mm) 5 19 324 1.3 4.1 51

10 5 354 0.9 4.1

Quantities in the parentheses in the first column specify beam lengths that yield the first resonance at the corresponding

frequencies.
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Table 2

Performance of the low-frequency vibration generator at acceleration levels 5m s�2 (for 2, 4, and 5Hz) and 10m s�2

(for 8 and 10Hz), shown with specifications in the ISO standards [2,3] for vibration calibration

NRC low-frequency

vibration generator

ISO 16063-11:1999

specification for

primary calibration

ISO 16063-21:2003

specification (Example 1)

for comparison calibration

Frequency stability (ppm) p88 o500 p1000

Acceleration amplitude stability

(ppm)

p632 o500 p1000

THD (%) p0.9 p2 p10

Transverse/rocking vibration (%) p4.1 o1 p10

Level of hum and noise below full

output (dB) (fX10Hz)

51 X70 X50

Level of hum and noise below full

output (dB) (fo10Hz)

X50 X70 X20

W.-S. Ohm et al. / Journal of Sound and Vibration 289 (2006) 192–209 203
response of the beam, are amplified and thus degrade the overall performance. See Fig. 3(b) for an
example.] As expected, the harmonic distortion of the generator is very small over the frequency
and acceleration ranges of interest. Except for the cases of 8 and 10Hz at the lowest acceleration
level, all measured values of total harmonic distortion are well within the limit of 2% specified by
the ISO standard describing primary vibration calibration [2]. Greater values of harmonic
distortion are encountered for the cases of 8 and 10Hz, because the second resonant mode of the
beam (occurring near 60Hz for these cases) is excited by hum and noise whose spectral peak is at
60Hz. However, as the acceleration level increases, the improved signal-to-noise ratio leads to
smaller total harmonic distortion.

Transverse and rocking accelerations are shown in terms of the ratio of their combined
magnitude [represented by €u þ €yy0 in Eq. (20)] to that of the main-axis acceleration. Table 1 shows
that the transverse and rocking acceleration is sufficiently small (3–5%) for the comparison
calibration of accelerometers, where the specified maximum for transverse/rocking vibration in
the ISO standard [3] is 10%. Hum and noise, mainly generated by the power amplifier, is
approximately 50 dB below the full output over the frequency range of interest.

To examine the overall suitability of the generator for vibration calibration, the performance at
acceleration levels 5m s�2 (for 2, 4 and 5Hz) and 10m s�2 (for 8 and 10Hz) is compared with the
requirements in the ISO standards [2,3] in Table 2. (The above combinations of frequencies and
acceleration levels are deemed appropriate for calibration.) The generator fulfills all the
requirements for comparison calibration.
5. Calibration of accelerometers

The vibration generator described above is used in a system for the comparison calibration of
an accelerometer in the frequency range from 2 to 10Hz. The reference and test transducers are
mounted back-to-back at the free end of the beam (Fig. 1). Outputs from two transducers are fed
into separate channels of a digital voltmeter and their rms voltage ratio is computed to yield the
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sensitivity magnitude of the test transducer. The reference transducer set consists of a uniaxial
accelerometer (model 4382, Brüel & Kjær) and a charge amplifier (model 2650, Brüel & Kjær).
For a typical test accelerometer, the relative expanded uncertainty of the comparison calibration
employing the cantilever-beam vibration generator is 2.6% at a confidence level of 95%. Some of
the sources of measurement uncertainty arising from the vibration generator are discussed below.

5.1. Total harmonic distortion

As mentioned above, the sensitivity magnitude of the test accelerometer is given by the ratio of
the rms voltages from the reference and test channels. Because total harmonic distortion adds
incoherently to the fundamental component in both the reference and test channels, the relative
uncertainty contribution uTHD due to total harmonic distortion can be written as

uTHD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½THD ð1þ dÞ�2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ THD2

p � 1, (21)

where THD is the total harmonic distortion and d is the maximum deviation of the frequency
response of the test transducer from that of the reference. A quick algebra involving binomial
expansion of both the numerator and denominator in Eq. (21) yields

uTHD½%� ¼ THD2 � d, (22)

where the values of THD and d are given in fraction and percent, respectively.
Because of the low distortion levels of the vibration generator, the resulting contribution is less

than 0.001% for d ¼ 10% at the levels and frequencies used in the calibration. Assuming a
rectangular probability distribution [13] (divisor

ffiffiffi
3

p
), the relative standard uncertainty due to

harmonic distortion is 0.0006%.

5.2. Transverse and rocking acceleration

The formula used to evaluate the influence uv of transverse and rocking acceleration is [3]

uv½%� ¼ av �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

2

v;r þ S
2

v;t

q
. (23)

Here, av is the relative amplitude of transverse/rocking acceleration expressed in fraction and
Sv;r; Sv;t; are, respectively, transverse sensitivities of the reference and test transducers in percent.
(Maximum transverse sensitivity of 5% is assumed for both the reference and test transducers.)
Transverse/rocking acceleration of the vibration generator composes the largest systematic effect
(0.4%) in the overall uncertainty, other than those arising from the reference transducer set. The
effect is assumed to have a special 1-s distribution [3] (divisor

ffiffiffi
1

p
8) and thus the corresponding

relative standard uncertainty is 0.1%.

5.3. Hum and noise

Hum and noise adds incoherently to the fundamental component in both the reference and test
channels. Therefore, a formula similar to that employed in the calculation of distortion
contribution [Eq. (22)] can be used to assess the uncertainty due to hum and noise; simply
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substitute the relative magnitude of hum and noise given in fraction for the value of THD in Eq.
(22). The uncertainty contribution is 0.001%. Assuming a rectangular probability distribution
leads to a relative standard uncertainty of 0.0006%.
6. Conclusions

A system for generation of low-frequency vibration is presented. Resonance of a cantilever
beam is harnessed in order to extend the effective frequency range of a conventional shaker below
10Hz. Model equations that describe both the flexural and longitudinal motion of an elastic beam
are derived for an analysis of the vibration generator. The generator performance is measured for
a set of frequencies and acceleration levels of interest. Apart from the ease of implementation, the
current vibration generator shows satisfactory performance, especially in terms of very low
harmonic distortion. The generator meets all the requirements specified by the International
Standard ISO 16063-21:2003 for comparison calibration of vibration transducers.
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Appendix A. Derivation of model equations

Model equations describing the flexural and the resulting longitudinal motion of an elastic
beam are usually found in the literature that deals with the finite-amplitude vibration of a beam
[14–22]. The longitudinal motion caused by beam flexion is coupled with the flexural component
through nonlinear relations and constitutes a higher-order effect. Therefore, the geometric
nonlinearity, which determines the coupling of the flexural and longitudinal modes, must be
considered in the derivation. Geometric nonlinearity arises from two distinct mechanisms: (1) the
Green strain relation [Eq. (A.1), to be discussed below] that quantifies extensional deformation of
the centroidal plane of a beam and (2) the nonlinear curvature [Eq. (A.5), to follow] of the
deflection curve. Depending on the treatment of the above nonlinear mechanisms, the existing
literature on nonlinear beam vibration can be grouped into three categories. The first group of
authors [14–16] employs the inextensibility assumption (i.e., the centroidal plane of a beam
undergoes neither extension nor compression and thus the corresponding Green strain remains
zero throughout the motion) and approximate expressions for nonlinear curvature that include
both the flexural and longitudinal components. In the second group of work [17–19], derivations
are performed specifically for a simply supported beam with negligible longitudinal inertia, where
uniform extension of the centroidal plane is taken into account. Other investigators [20–22]
consider the full extensibility of the centroidal plane with nonzero longitudinal inertia, but use
linear approximation for the curvature.
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Although varying in the level of complexity and sophistication, none of the aforementioned
studies consider extensibility and the exact nonlinear curvature, simultaneously. In this regard,
our aim here is to derive a set of model equations that accounts for geometric nonlinearity to the
fullest extent. The derivation most closely follows that of Crespo da Silva and Glynn [15], but
differs substantially in the following aspects. First, the present derivation does not employ any
assumptions pertaining to the extensibility of the centroidal plane, whereas in the derivation of
Crespo da Silva et al., the inextensibility condition is used as a ‘‘constraint’’ that leads to the
creation of a somewhat fictitious external force represented by the Lagrangian multiplier l:
Second, the exact expression for nonlinear curvature is used, which does not appear in any of the
aforementioned work.

We start with the Green strain �xx; associated with the elongation of the centroidal plane,

�xx ¼ ½u0 þ 1
2
ðy0Þ

2
� þ 1

2
ðu0Þ2, (A.1)

where primes denote differentiation with respect to the material coordinate x: The bracketed
terms constitute the leading contribution at Oð�2Þ; whereas the last term represents a much smaller
Oð�4Þ effect. In the case of negligible longitudinal inertia, there is no wave motion along the
centroidal plane and, therefore, the centroidal plane experiences uniform extensional strain that
varies only in time. In mathematical terms, this is expressed as, at Oð�2Þ;

�xx ¼ u0 þ 1
2
ðy0Þ2 ¼ �xxðtÞ. (A.2)

Note that the inextensibility condition at Oð�2Þ;

�xx ¼ u0 þ 1
2
ðy0Þ

2
¼ 0, (A.3)

is a special case of Eq. (A.2). The tangential angle y of the deflection curve, as illustrated in
Fig. 2(a), is related to the flexural and longitudinal displacements via

tan y ¼
y0

1 þ u0
. (A.4)

The exact expression for the nonlinear curvature k is then given by [23]

k ¼
dy
ds

¼
ð1 þ u0Þy00 � u00y0

½ð1 þ u0Þ
2
þ ðy0Þ

2
�3=2

, (A.5)

where s is the arc length measured along the centroidal plane [dashed line in Fig. 2(a)].
Simpler forms of the above equation have been used by some investigators, most notably,

k � ð1 þ u0Þy00 � u00y0 by Wagner [14] and

k �
ð1þ u0Þy00 � u00y0

ð1 þ u0Þ2 þ ðy0Þ
2

by Crespo da Silva et al. [15].
To obtain equations of motion from Hamilton’s principle, the Lagrangian density of the system

needs to be considered. For a Bernoulli–Euler beam, the Lagrangian density L containing
translational and rotational inertia, and strain energy due to extension and bending, reads

L ¼ 1
2rAð _u2 þ _y2Þ þ 1

2rI _y
2
� 1

2EA�2xx �
1
2EIk2. (A.6)
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The dot symbol implies differentiation with respect to time. Substitution of Eqs. (A.1), (A.4), and
(A.5) into Eq. (A.6) leads to

L ¼ Lð _u; u0; _y; y0; _y; y0Þ

¼
1

2
rAð _u2 þ _y2Þ þ

1

2
rI _y

2
�

1

2
EA u0 þ

1

2
ðy0Þ

2
þ

1

2
ðu0Þ2

� �2

�
1

2
EI

ðy0Þ2

ð1þ u0Þ
2
þ ðy0Þ2

� �
, ðA:7Þ

where

y0 ¼
ð1 þ u0Þy00 � u00y0

ð1þ u0Þ
2
þ ðy0Þ2

.

According to Hamilton’s principle, the motion of a beam is such that the integral J of the
Lagrangian density has a stationary value, that is,

dJ ¼

Z t2

t1

Z x2

x1

dLdx dt þ

Z t2

t1

Z x2

x1

ðFudu þ FydyÞdx dt þ

Z t2

t1

dW B dt ¼ 0, (A.8)

where

dL ¼
qL
q _u

d _u þ
qL
qu0

du0 þ
qL
q _y

d _y þ
qL
qy0

dy0 þ
qL

q_y
d_yþ

qL
qy0

dy0

is the variation in the Lagrangian density, Fu;y are the external forces, and dW B is the virtual work
performed at the boundaries (x ¼ x1;2). Because the tangential angle y depends on the
displacements u and y according to Eq. (A.4), the variations d_y and dy0 in dL must be recast
in the form

d_y ¼
q
qt

qy
qu0

� �
du0 þ

q
qt

qy
qy0

� �
dy0 þ

qy
qu0

d _u0 þ
qy
qy0

d _y0, (A.9)

dy0 ¼
q
qx

qy
qu0

� �
du0 þ

q
qx

qy
qy0

� �
dy0 þ

qy
qu0

du00 þ
qy
qy0

dy00. (A.10)

Solving Eq. (A.8) in conjunction with Eqs. (A.9) and (A.10) yields the following set of equations
of motion in the flexural and longitudinal displacements:

�
q
qt

qL
q _y

� �
�

q
qx

qL
qy0

� �
þ

q
qx

q
qt

qL

q_y

� �
þ

q
qx

qL
qy0

� �� �
qy
qy0

� �
þ Fy ¼ 0, (A.11)

�
q
qt

qL
q _u

� �
�

q
qx

qL
qu0

� �
þ

q
qx

q
qt

qL

q_y

� �
þ

q
qx

qL
qy0

� �� �
qy
qu0

� �
þ Fu ¼ 0. (A.12)

The above wave equations with the Lagrangian density given by Eq. (A.7) are valid at all orders
(within the framework of geometric nonlinearity), but are not convenient for analysis. Thus,
binomial expansion of Eqs. (A.11) and (A.12), following the substitution of Eq. (A.7), is
performed to produce equations that are valid up to Oð�2Þ: After straightforward (albeit extensive)
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algebra, Eqs. (A.11) and (A.12) reduce to

q4y

qx4
þ

1

a2

q2y

qt2
�

1

c2
l

q4y

qx2qt2
¼ ~Fyðx; tÞ, (A.13)

q2u

qx2
�

1

c2
l

q2u

qt2
¼ �

1

2

qðy0Þ2

qx
� r2

q
qx

½y0y000 � ðy00Þ2� þ
r2

c2
l

q
qx

ðy0 €y0Þ þ ~Fuðx; tÞ, (A.14)

where cl ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
the longitudinal wave speed, r ¼

ffiffiffiffiffiffiffiffiffi
I=A

p
the radius of gyration for the cross-

section, ~Fy ¼ Fy=EI ; and ~Fu ¼ Fu=EA: Eqs. (A.13) and (A.14) represent, respectively, consistent
Oð�Þ and Oð�2Þ approximations of the full equations of motion [Eqs. (A.11) and (A.12)] for the
flexural and longitudinal vibration of a beam. Nonlinear terms on the right-hand side of Eq.
(A.14) are arranged in order of extension, bending, and rotational inertia contributions.

For the purpose of the low-frequency vibration generator under consideration, further
simplification of the model equations is necessary. To judge the relative importance of the terms in
Eqs. (A.13) and (A.14), the following dimensionless variables are introduced:

x ¼ bx and t ¼ ot. (A.15)

Here, b is the wave number of a typical mono-frequency wave and o the corresponding angular
frequency. Eqs. (A.13) and (A.14) become, after nondimensionalization,

q4y

qx4
þ

1

1þP

� �
q2y

qt
2
�

P
1þP

� �
q4y

qx2qt
2
¼

1

b3
~Fyðx; tÞ, (A.16)

q2u

qx2
�

P
1 þP

� �
q2u

qt
2
¼ �

1

2

qðy0Þ
2

qx
�P

q
qx

½y0y000 � ðy00Þ
2
�

þ
P2

1 þP

� �
q
qx

ðy0 €y
0
Þ þ

1

b
~Fuðx; tÞ, ðA:17Þ

where the bar symbol is used to denote dimensionless quantities, and P ¼ ðbrÞ2 is a dimensionless
parameter that quantifies the beam thickness relative to the wavelength. From Fig. 2(a), the
external force that is to be entered into Eq. (A.16) takes the form

~Fyðx; tÞ ¼ �~cðoÞ
qy

qt
þ ð ~Fs þ ~Fde

�iotÞdðx � x0Þ. (A.18)

Now, we invoke the thin-beam assumption ½P ¼ ðbrÞ251� in Eqs. (A.16) and (A.17), and rewrite
the resulting equations in terms of physical variables (that is without bar symbols) to arrive at
Eqs. (1) and (4).
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